

www.metalshoefablab.pt

Al and Algorithms in Safety-Related Systems – A Internal View on ISO/IEC TR 5469 and IEC TS 62998-3

Dr. Patrik Feth - SICK AG

UNIÃO EUROPEIA
 Fundo Europeu
 de Desenvolvimento Region

Introduction

Active Focus Groups in Al Standardization

No intention of completeness

- ISO/IEC JTC 1 SC 42: Artificial Intelligence
- CEN-CENELEC JTC 21: Artificial Intelligence
- IEEE P7000: Ethics in Action in Autonomous and Intelligent Systems
- OMG AIPTF: Artificial Intelligence Platform Task Force

Active Groups in Al Standardization

Zur Information

C	Ookument
	Projekt > Arbeitspapier NA 043-01-42 GA_N9311
	Sitzung > Tagesordnung NA 043-01-42 GA_N9312
	Projekt > Arbeitspapier NA 043-01-42 GA_N9313
	Projekt > Sonstiges NA 043-01-42 GA_N9314
	Projekt > Sonstiges NA 043-01-42 GA_N931{
	Projekt > Arbeitspapier NA 043-01-42 GA N931(
	Projekt > Sonstiges NA 043-01-42 GA_N9317
	rojekt > Arbeitspapier A 043-01-42 GA_N931{
	rojekt > Sonstiges A 043-01-42 GA N931§
	ojekt > Kommentare \ 043-01-42 GA_N932(
	ojekt > Kommentare A 043-01-42 GA N9321
Pi	rojekt > Kommentare A 043-01-42 GA N9322
P	- Projekt > Kommentare IA 043-01-42 GA N9323
F	Projekt > Kommentare NA 043-01-42 GA N9324
	Projekt > Kommentare NA 043-01-42 GA_N932{

centro tecnológico do calçado de portugal

UNIÃO EUROPEIA
 Fundo Europeu

Ongoing Activities Related to Safety

No intention of completeness

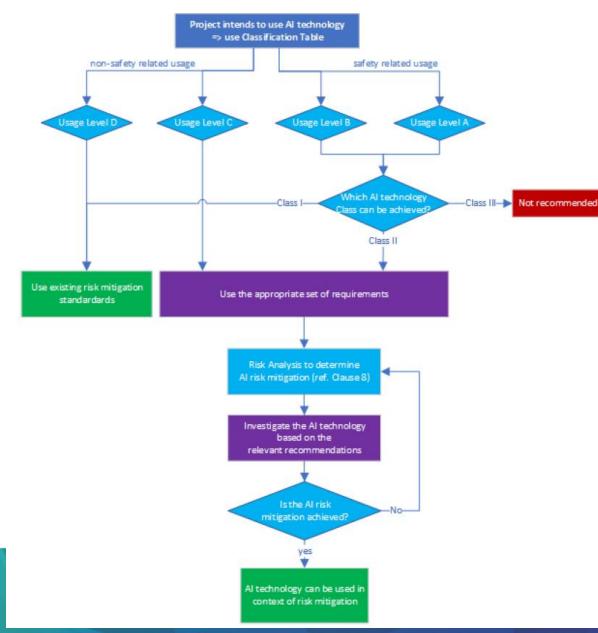
- ISO/IEC TR 5469
- IEC TS 62998-3
- VDE-AR E 2842: Assurance-Case-based argumentation for the trustworthiness of a system potentially containing AI
- IEC TC 65 WG 23 Task Force Safety Recommendations for Smart Manufacturing
- ISO/AWI TS 5083: Road vehicles Safety for automated driving systems
- ISO/AWI PAS 8800: Road vehicles Safety and artificial intelligence

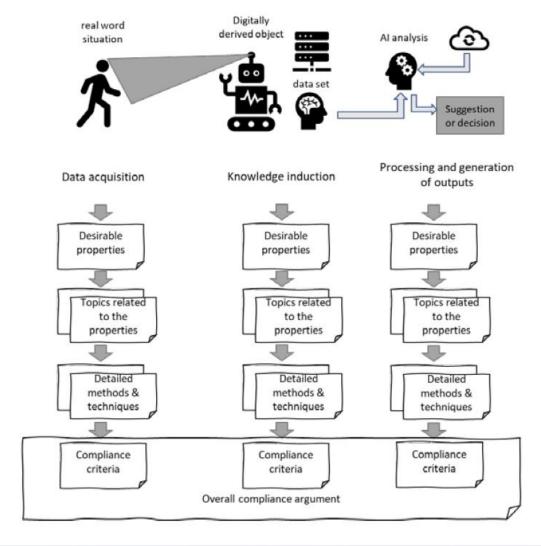
Title: Artificial intelligence — Functional safety and AI systems

Scope: This document describes the properties, related risk factors, available methods and processes relating to:

- Use of AI inside a safety related function to realize the functionality
- Use of non-AI safety related functions to ensure safety for an AI controlled equipment
- Use of AI systems to design and develop safety related functions

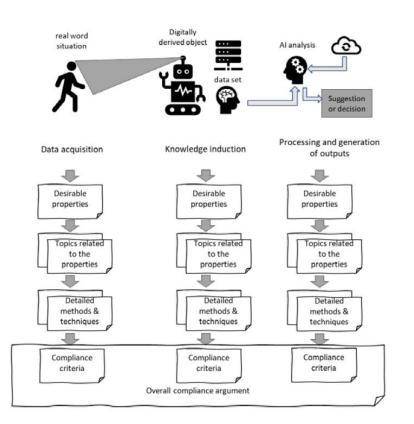
Status: DTR expected mid of 2022





ISO/IEC TR 5469

Materials from CIB for Comment – ISO/IECTR 5469

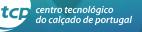


ISO/IEC TR 5469

Materials from CIB for Comment – ISO/IECTR 5469

Stage: knowledge induction from training data and human knowledge Desirable property: Specifiability					
Торіс	Details	КРІ	Available methods with references		
specification of the dataset	 amount of data type of data needed (e.g., object classes, ODD, weather conditions, geographic domain, background scene) division of data between training, validation and testing 	 dataset coverage dataset distribution example: the dataset contains images acquired for different road types during differing weather conditions, and the data acquisition takes place during daytime. 	 manual curation active learning 		
specification of labeling policy	 data annotation treatment of occluded objects number of annotators annotating the same data 	 labeling quality distribution example: the road lane boundaries are marked pixel by pixel. Each image is annotated by two independent annotators. The amount of 10 % of randomly selected data is additionally annotated by a third annotator 			

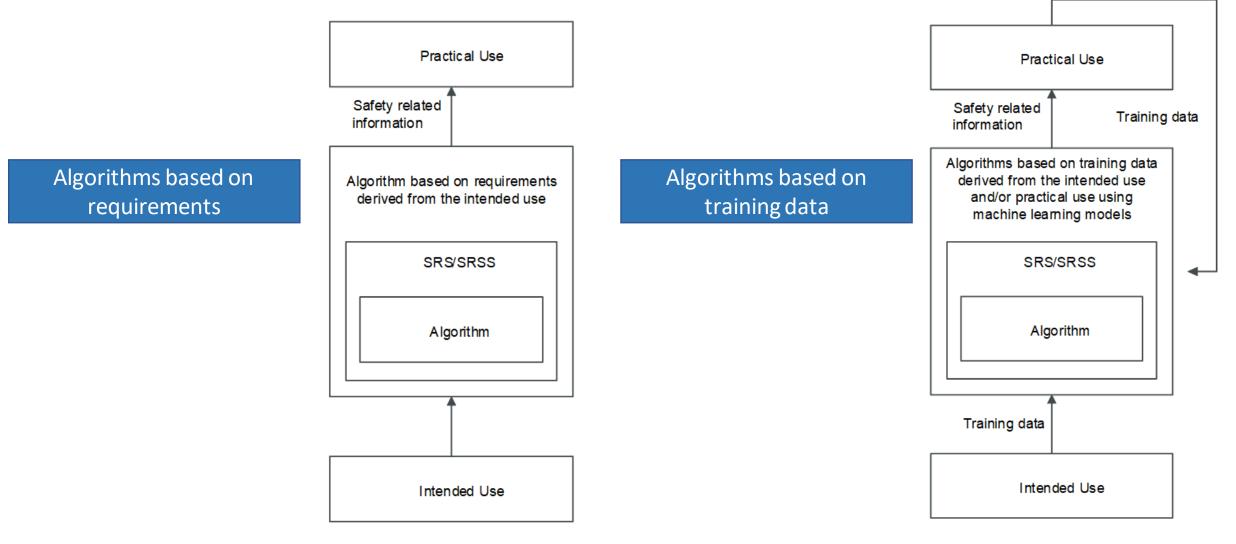
IEC TS 62998-3


Title: Safety of machinery – safety-related sensors used for the protection of persons. Part 3: Sensor technologies and algorithms

Scope: This document gives guidance on:

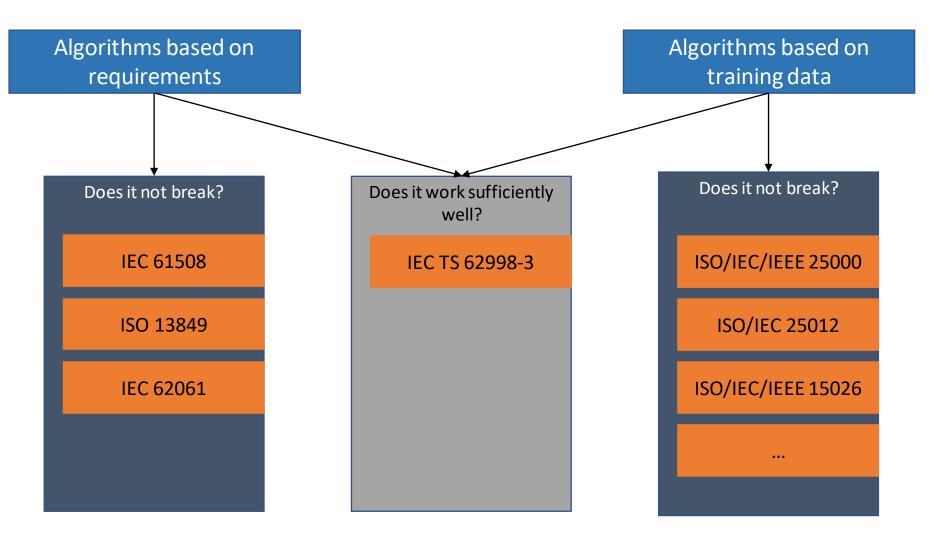
- ...
- appropriate use of algorithms during the integration of SRS or SRSS by the integrator to improve execution of measurement information or provide decision information derived from measurement information;
- use of algorithms during design and development of a SRS by the manufacturer to achieve appropriate detection capability.

Status: Waiting for CD 2 comments



VNIÃO EUROPEIA

IEC TS 62998-3



IEC TS 62998-3

It is possible to have advanced algorithms in safety-related systems if a proper engineering process is in place.

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional